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Abstract 

We show that the bicovariant first-order differential calculi on a factorisable quantum group with 
the Peter-Weyl decomposition property are in l-1 correspondence with irreducible representations 
V of the quantum group enveloping algebra. The corresponding calculus is constructed and has 
dimension dimV’. The differential calculi on a finite group algebra CC are also classified and 
shown to be in correspondence with pairs consisting of an irreducible representation V and a 
continuous parameter in @pdim “-I. They have dimension dimV. For a classical Lie group we 
obtain an infinite family of non-standard calculi. General constructions for bicovariant calculi and 
their quantum tangent spaces are also obtained. 0 1998 Elsevier Science B.V. 

Subj. Cluxs.: Quantum groups 

IYYI MSC: 17B37.8lR.50 
Kewords: l-form: Differential calculus: Quantum tangent space; Quantum group: Non-commutative 

geometry; Quantum double 

1. Introduction 

One of the first steps in non-commutative geometry of the kind coming out of quantum 
groups is the choice of ‘first-order differential calculus’ or ‘cotangent bundle’. Only when 
this is fixed can one begin to do gauge theory [I] or make other geometrical constructions. 
When the quantum space in question is a quantum group, A, it is natural to require that 
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the differential calculus is covariant under left and right translations. Thus, we require 
rrD’(A),d:A-+rsuchthat 
(1) r is an A-bimodule. 
(2) r is an A-cobimodule, with coactions AL : r + A@r, AR : r -+ T@A bimodule 

maps. 
(3) d : A -+ r is a bicomodule map. 
(4) d(ab) = (da)b + a(db) for all a, b E A. 
(5) r = span@ db I a, b E A}. 

Here, a bicomodule is like a bimodule but with arrows reversed, i.e. a pair of commuting 
coactions AL, AR. A morphism of differential calculi means a bimodule and bicomodule 
map forming a commutative triangle with the d maps. These are the natural axioms studied 
by Woronowicz [2]. The axiom (5) here forces the calculus to be irreducible, and is assumed 
throughout. It should not be confused with a further coirreducibility condition which we 
will impose later. By now, several examples of bicovariant calculi are known, as well as a 
limited classification of further variants of the known calculi of a particular form [3]. Among 
general constructions, the class of ‘inner’ bicovariant calculi has also been introduced [4]. 
The classification of all the possible calculi on a general quantum group, however, has 
remained open until now. 

The main result of the paper, in Section 4, is a complete solution to this classification 
problem under the assumption of a factorisable quantum group with the Peter-Weyl de- 
composition property. The standard q-deformed function algebras G, of semisimple Lie 
groups are essentially of this type, up to suitable localisations or when working over formal 
power-series. In this case our algebraic result constructs a calculus on G, of dimension 
(dimV)2 for each irreducible representation V of U,(g), and indicates that these are the 
only ‘generic’ possibilities in the sense of extending to localisations or to working over 
formal power-series in the deformation parameter. 

We begin in Section 2 with some general constructions for bicovariant calculi on arbitrary 
Hopf algebras. We use, in fact, a dual reformulation of [2] in terms of ‘quantum tangent 
spaces’ (rather than l-forms) as subrepresentations of a particular quantum double repre- 
sentation. After recalling the preliminary material, we obtain some new results from this 
point of view. For example, we construct quantum tangent spaces associated to arbitrary 
central elements in the quantum group enveloping algebra. This provides for all G, a natural 
deformation of the classical calculus, by using the quadratic q-Casimir of the corresponding 

u, (8). 
In Section 3 we apply the general results to the complete classification for A = CC, 

the group algebra over a finite group, as well as recovering the known classification for the 
function algebra A = C(G). We also comment on the case where G is a Lie group and show 
that the Casimir construction in this case (with the quadratic Casimir of U(g)) recovers the 
standard commutative differential calculus. Section 5 concludes with some directions for 
further work. 

We work over C for convenience, but all abstract Hopf-algebraic results work over any 
ground field or, with care, over a ring such as C[[A]]. 
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2. Quantum tangent spaces and some constructions for them 

We begin with some preliminary material recalling the well-known role of the quantum 
double in classifying bicovariant differential calculi [2], albeit reformulated in dual terms, 
as quantum tangent spaces. It is these which will actually be constructed and classified in the 
paper. The preliminary material (through to Proposition 2.4) should essentially be known to 
experts, although we have not found a suitable treatment elsewhere. Proposition 2.3 is per- 
haps more novel and completes the ‘quantum tangent space’ picture (as braided derivations). 
We then proceed to the main new results of the section. such as the Casimir construction 
and a ‘mirror’ operation on the moduli space of bicovariant differential calculi. 

Let H be a Hopf algebra non-degenerately dually paired with A. The Drinfeld quantum 
double IS] is the double cross product Hopf algebra HwA ‘P built on H@A with the product 

and tensor product unit and coalgebra. This is the formulation from (61. We use here (and 
throughout) the notations and conventions from [7]. Thus, Ah = h( 1 )@/I(?) is the coproduct. 
S is the antipode (which we assume for convenience to be invertible), and ( , ) is the pairing 
between H and A. We denote the counit of any of our Hopf algebras by E. 

The quantum double has a formal quasitriangular structure R = c, ,fc’@e,, where (e,, ) 
is a basis of H and (f”} a dual basis of A. Although formal, this does lead to a braiding 
p among suitable representations. To make this precise, we define a representation of the 
quantum double of H to be A-regular if the action of A c HwA’p is given by evaluation 
against a (left) coaction of H. It is H-regular if the action of H is given by evaluation against 
a (right) coaction of A. If V is A-regular or W is H-regular then p : V@W + W@V is a 
well-defined operator. Thus, w(u@ul) = c,, e,r>w@f”r>v = cc, P,,DIu@~(,~‘~‘, I~(~‘)v(~) = 

u(‘)Dw@u(~) in the first case, where u t+ u(" @w(') (with summation understood) is the 
assumed coaction V + H@V. Similarly in the second case. 

Woronowicz [2] observed that first-order bicovariant calculi are in 1 -I correspondence 
with Ad-invariant ‘ideals’ in ker E. More precisely. they correspond to quotients of ker F c A 

by subspaces M which are stable under the action and coaction 

on II E ker t. Equivalently, they correspond to quotients V to which this action and coaction 
descend. The corresponding calculus is r = V@A with tensor product action and coaction 
from the left and trivial action and coaction on V from the right (here we take the left 
and right actions and coactions on A defined by its product and coproduct). In addition, 
do = u(~,@.u(z, - l@u, with the first tensor factor here projected to V. This is the most 
general form for a bicovariant calculus up to isomorphism. The case V = ker t c A is 
called the ‘universal’ first-order calculus. 

As a first step, we can write all coactions of A as actions of H. Then (2) becomes 

apu = au. hDU = (h, u~~~Su,~~)u(2~ Vu E A. h E H. (3) 
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and calculi correspond to quotients of which are equivariant under these actions. The quan- 
tum double is not needed to classify calculi here, but in fact these two actions do fit together 
to form a representation of AwHOp, the quantum double of A. This fact allows one to de- 
duce, for example, the canonical braiding cr in [2] from the quantum double quasitriangular 
structure, which would otherwise have to be introduced by hand. This was explained in 
[8]. In this context, it is natural also to reformulate the bicomodules AL, AR in the axioms 
(2) and (3) of a bicovariant calculus as an H ‘P-bimodule by evaluation against the coac- 
tions. In principle, requiring an H ‘p-bimodule could be slightly more general when H is 
infinite-dimensional. 

Lemma 2.1. The quantum double HwA’P acts on ker t c H by 

hr>x = h(j,rShC2,, aD.x = (a, x(1)).q2) - (a. x) 1 

,forallx E kern c H anda E A, h E H. 

ProoJ: The quantum double has a well-known ‘Schroedinger’ representation on H [7] by the 
quantum adjoint action and by the coregular ‘differentiation’ representation. This induces 
the action stated on ker E via the projection n(h) = h - 16 (h) as a morphism H --+ ker E, 
i.e. it is easy to see that it is indeed an action of the quantum double on ker E and that n 
is an intertwiner. Also, we can identify the linear space ker t c A with A/C (the quotient 
by the one-dimensional vector space spanned by the unit element); for any element in A/@ 
there is a unique representative in ker c c A. In terms of A/@ the action in (3) is 

ar>v = av - e(u)a hDv = (h, u(I)su(3))~(2), Vu E A/C, m E A, h E H. 

(4) 

The action stated in the lemma is the natural right action of AwHOp on ker E c H dual to 
this action on A/C, viewed as a left action of the quantum double of H. 0 

We are now ready to make a further reformulation which, when the bicovariant calculus 
is finite-dimensional as an A-module, is strictly equivalent by dualising V. 

Proposition 2.2. Finite-dimensional bicovariant calculi are in l-l correspondence with 
subrepresentations L & ker E c H of the quantum double representation in Lemma 2.1: 

r = Lin(L. A), (da)(x) = (x. a(l))a(z), 

(a Y)(x) = q2)YbqI)Dx). (v .a)(x) = v(x)a, 

(h . Y)(X) = (h(z), y(h(l)Dx)(l,)y(h(l)Dx)(z), (v . h)(x) = )/(x)(l)(y(x)(2), h) 

for all y E Lin(L, A), a E H and h E H. The vector space L is called the quantum tangent 
space associated to the calculus. 

Proc$ A quotient of A/C which is equivariant under the quantum double action corresponds 
under dualisation to a subspace of ker E c H which is stable under the action in Lemma 2.1. 
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Thus, this is a dual formulation of the correspondence (3). Also, with the projection to V 
understood, we have du = u(~)@JuQ) - I@a = a(l)@a(~) when we work with V as a 
quotient of A/@. This leads to the form shown for d. It is easy to verify directly that 
the structures shown indeed provide a first-order bicovariant differential calculus given L. 
Conversely, in the finite-dimensional case. we define L = V*. where V is the invariant 
part of f under the usual correspondence in (3). In terms of the ideal M which defines 
the bicovariant calculus via (2). the corresponding quantum double subrepresentation is 
L = (_x- E ker tl (x. a) = 0 VU E M]. ii 

The correspondence in Proposition 2.2 is contragradient. i.e. morphisms of calculi I-1 ---) 
l-2 correspond to inclusions L2 cf LI of quantum double subrepresentations. Only in- 
clusions are allowed here, corresponding to all morphisms of calculi being of the form 
l-2 a quotient of I-1. In the infinite-dimensional case every bicovariant calculus continues 
to define a subrepresentation L. and. conversely, a subrepresentation L continues to pro- 

vide a bicovariant first-order calculus in our slightly generalised sense where an action of 
HOP replaces the coactions AL. AR. It is this final reformulation in terms quantum tangent 
spaces which we will use; by definition a quantum tangent space L is a subrepresentation 
of ker t c H under the action of the quantum double of H. and it is these which we will 
actually classify in the present paper. Indeed, quantum tangent spaces are an equally good 
starting point for differential calculus. 

Proposition 2.3. For each x E L, we define the ‘braided derivation’ 

3, :A+A. &(a) = (da)(x). 

This obeys 

where @J : L@A + A@L is the quantum double braiding between A. L as quantum double 
modules, with inverse ly-‘(a@~) denoted explicitly by Il/(a~.~)-(‘)~~(a~~)-(~). 

Proof We start with the identity 

&(ub) = (~5 (ab)(l,)(ab)(z, = (x(I).~(I))(-~(z)* b(l~)~(+(z) 

= (.x. a(l + (Q(I)~x. b(l,)a(z,b(z, = &(a)b + a(?)&,,,,,, (h) 

based on the definition of 8, and the action in Lemma 2. I. On the other hand, A is a quantum 
double module by 

hD>u = (Sh, U(I))U(Z). bw = (S-‘b&ab(,,, (5) 

which is the conjugate (dual) of the Schroedinger representation of the quantum double on 
H. It is H-regular, so that the braiding * is well-defined. We compute it easily as 

@((.X6@) = e,DU@,f’DX = U(~)@SU(l)DX 16) 

with inverse V’(U&.X) = U(~)DX@IU(~). which we put into the above identity. ??
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Because the subspace L is stable under the quantum adjoint action, it is tempting to 
restrict the latter to L as a ‘quantum Lie bracket’ [ , ] = Ad : L@L + L. The use of Ad as 
‘quantum Lie bracket’ has been discussed in [2] from this point of view and independently 
from another point of view in [9] (where the ‘quantum Lie bracket structure constants’ for 
the l+Sl- generators of U,(g) were computed in R-matrix form). The only content here 
comes from the identities 

[x3 [Y. zll = [b(I), VI, b(2), zll, b(I), Y]X(2) = xy (7) 

for any quantum group with [ , ] = Ad the left adjoint action. For completeness, cf. [2]: 

Proposition 2.4. The ‘quantum Lie bracket’ on L dejined by Ad obeys 

[x. [.v, z.11 = [Ix, yl, zl + [ , [, zll 0 ~Y(a?Y), b, VI = xy - .~@8Y), 

where 9 is the quantum double braiding between L , L as quantum double modules. 

Proo$ We again use the formula 9(x@y) = e,r>y@ f ‘Dx; our action of the quantum 
double of H is regular and we still have a well-defined operator 

~W’Y) = Adeo(.v)@(Lf-“. x(l))x(2) - (f”, x)1) = b(l), YEq2) - Lx, yl@l. 

(8) 

Then (7) can be trivially rewritten in the form stated by eliminating the coproduct in favour 
of Iv in these equations. 0 

We would like to stress that most L, [ , ] are not, however, reasonable as a ‘quantum Lie 
algebra’ of H; one needs further structure on L for this. The problems have been explained 
in [9] and lead one to the braided version [lo]: 
(1) Although ‘enveloping algebra-like’ relations [x, y] = xy - .LL(x@y) hold in H, we do 

not know that L generates H. Even if it does, we do not know that these are the only 
relations in H. Indeed, for U,(s) they are not. So H # U(L) as generated by L and 
such relations. 

(2) Even if H were to be generated in some way from L, we are not able to recover the 
coproduct of H in this way. Indeed, for U,(g) the coproduct of H does not have any 
simple form on L and hence cannot be generated in some canonical way. Without this, 
U(L) is only an algebra and not a Hopf algebra or bialgebra. Equivalently, one cannot 
tensor product representations of L in any natural way, which makes it useless as a ‘Lie 
algebra’ symmetry. 

In the case where H is quasitriangular, there is a ‘transmutation theory’ [ 111 which converts 
H to a braided group. It also converts L to a ‘braided-Lie algebra’ C. The linear maps [ , ] 
are the same (the braided adjoint action coincides with the quantum one) but the coalgebras 
are different. For the standard calculus on G,, the braided coproduct takes a standard matrix 
form on C and there is a corresponding U(C) as a braided group (bialgebra in a braided 
category) generated from L. Thus, the problems (1) and (2) are resolved at the price of 
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working with the braided version of the theory. But for a general Hopf algebra H and 
general 15. we do not really have a ‘quantum Lie algebra’ or braided-Lie algebra at all. 
Hence we prefer the term ‘quantum tangent space’ for the subspace L. 

We would also like to stress that not all quantum double modules are relevant to the 
constructions above, but only the modules V which are quotients of ker c c A, or their 
duals L = V* which (as explained above) are subrepresentations of ker c c H. Moreover. 
in the infinite-dimensional case one has various formulations which are not quite equivalent. 
If one wants to work entirely with the Hopf algebra A and differential forms, one may work 
throughout with crossed A-modules (i.e. an action and coaction of A). It is known from [6] 
that these coincide with D(A)-modules in the finite-dimensional case. If one is interested 
only in quantum tangent spaces one can work entirely with H, by working with D( H )- 
modules as crossed H-modules (i.e. an action and coaction of H). The above formulation 
with A and H dually paired is a third option. Of these formulations, the one in terms of 
crossed A-modules follows most directly from the axioms: following [ 121, it is clear that a 
bicovariant bimodule f as in axioms (1) and (2) of a bicovariant calculus (also known as 
bi-Hopf module) is the same thing as a crossed module V = rinv (the A-coinvariant part 
of f ), which is the point of view used by Woronowicz ]2]. 

We proceed now to general constructions for bicovariant calculi and their quantum tangent 
spaces. Firstly, we recall that any elementa E A which is invariant under the adjoint coaction 
Ad in (2) can be used to generate an ideal A(a! - C(W)) to quotient ker c c A by. This class 
of bicovariant calculi can be called inner ~pr-I because the exterior derivative obeys 

c(a)du =u(I)E(~)@u(~) - I~(CY)~U 

=qIp@u(2) - cfml = u (cr@l) - (cr@l) u (9) 

projected down to the quotient. The expression on the right is shown lifted up to ANA as a 
left A-module by the tensor product left action and a right A-module by right multiplication 
in the second copy. A variant of this construction was introduced in [4], where we quotient 
by the ideal (kerc).(cr - (E(CY) + 1)) G kern c A and we have 

da = (U(l) - ~(U(I)))@U(?) 

=Q(I)(~ - E(a)m7(2) - (a - c(a))@u = a o(a) -w(a). u 
( IO) 

in the quotient, where O(CY) = (a, - E (a))@ 1 = (da( 1 ))Sap) E f. This class can be called 
inner &pe-Il. Since Ad-invariant elements (Y are closed under addition and multiplication, 
we have whole ring of bicovariant differential calculi of either type. The standard calculi 
on G, were already obtained in [ 131 as a quotient of an inner type-II form (with 01 the 
q-trace), while Brzezinski and Majid [4] extended this to a ring of calculi generated by 
(~1, . . , CX, E G, constructed by transmutation. 

Note that the condition for a general calculus that V is an equivariant quotient of ker t c A 
is the same thing as an equivariant surjection n : A/@ -+ V, where the quantum double 
acts as in (4). This is the same thing as a sujection rr : A -+ V obeying 

?‘f(ub) = c(b)r(u) +UDX(b) vu. b E A, (11) 



126 S. Majid/Journal of Geometry and Physics 25 (1998) 119-140 

and intertwining the action of H (or coaction of A), i.e. a surjective equivariant Hocschild 
1 -cocycle, cf. [ 141 from a different point of view. This provides a class of coboundury calculi 
where r is a Hocschild coboundary, i.e. n(a) = UDU - E(U)V for some invariant u E V. 
Surjectivity means that we are forced to u = ~(a) for some (Y E A which is Ad-invariant 
up to projection by X. One has w(a) = (da(t))Sa(2) = n(cr)@l and 

da = n(a(1))@.a(2) = U(I)DT(U)@U(~) - JT(a)@J = a . w(a) _ w(u) . a Vu E ,L, 

(12) 

since X(a) = @T(a) - e(u)n(a). The inner type-II construction from [4] is an example 
of this more general coboundary type: writing the projection map n for this explicitly, 
n(a)(l + E(a)) = n((u - c(U))(l + C(U)) = ?T((U - E(U))CX) = t(CY)n(U) + UD?T(Cd) - 

t(u)n(cr) since rr sends ker 6 . (a - (1 + E((Y))) to zero and obeys (1 1). This is a little 
different from a corresponding discussion in [ 141. 

Proposition 2.5. The quantum tangent space for an inner type-I bicovuriunt diferentiul 
culcu1u.s de$ned by any non-trivial element (Y E A invariant under Ad in (2) is the quantum 
double subrepresentation 

L, = (X E kern c HI x~I)(xQ), (Y) = xc(a)]. 

This has a canonical extension L, where the condition on x is only required to hold on 
evaluation against all a E ker t c A. Similarly, the quantum tangent space for the inner 
type-II case is 

L a,~ = {n E kerr c HI (x,ua) = (x,a)(e(a) + 1)Vu E kert c A). 

Proo$ It is convenient to first identify ker E with A/@ as in the proof of Lemma 2.1. Then 
an inner type-1 bicovariant calculus has V the quotient by the image ADCI in A/C. Hence 
its dual consists of the linear functionals x E ker t c H such that (x, UDCX) = 0 for all 
(I, i.e. such that (x, acx - UE(CX)) = 0. This leads to the dual formulation; we define L, as 
stated and verify directly that it is stable under the quantum double action in Lemma 2.1, 
which is a straightforward Hopf algebra computation. The variant in which we require 
(x, aa) = (x. U)E ((Y) for all u E ker E c A is easily verified to also form a quantum double 
subrepresentation, and defines i,. The type-II case is similar. 0 

Note that we can define LU,h similarly, with ??(a) + h in place of E(CY) + 1 and then 
obtain Ada = u w(a) - o(a) a as in [4]. All non-zero k are equivalent to the inner 
type-II construction via La.* = L,- I~. , , while La,0 = r;b,. More generally, we can restrict 
the condition Vu E kere c A by requiring only a E M, where A4 C kert c A is the 
quotienting ideal for any given bicovariant calculus. This gives a l-parameter family of new 
calculi with quotienting ideal M. (a - (t(a) + A)), and is the general idea behind the above 
constructions. 

The representation-theoretic point of view suggests, however, a different type of general 
construction for any Hopf algebra. Namely, pick any element x E ker E c H and define 
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L = (HPQA”P)Dx, the image of x under the quantum double action. It evidently forms ;I 
subrepresentation of ker c and hence by Proposition 2.2 it defines a bicovariant differential 
calculus. More generally, the image of any left ideal of the quantum double acting on any 
x E ker E c H will be a subrepresentation. An interesting special case of this idea is the 
following. 

Proposition 2.6. Let c E H be any non-trivial central element. There is un crs.socY</trd 
bicovariant differential calculus with 

L,. = span{& = (a, c(I))c(z) - (u, c) I I u E kert c A]. 

&,,(b) = @b(l). c)bc2) - (a, c)b. WI-’ (b&u,,) = xo/,,,,@b(z,. 

Lx,. xhl =x+, (aGb(l))b(3). 4 - xh(u, 4. ~L(.k@x./J) = -~h,l,~‘X,,(.s/,,,,)/~,l, 

for all b E A in the middle line. We say thut the quantum tangent space L,. or its corrrspond- 
ing bicovariunt dtfferential calculus is centrally generated. It has a ~anoniccll extrnsiot~ l:, 

spanned by (x,, ) ,for all a E A. 

Proof: The quantum double can also be written as A”baH. i.e. every element can be written 
uniquely in the form xi a;h; with ui E A and hi E H. A central element c is precisely an 
element for which hr>c = e(h)c for all h E H. Hence the image of .r = C’ - CC(,) under 
the quantum double action reduces to the image of the action of A in Lemma 2. I. Thus 
LC. = span(x,, = UD(C - c(c))lu E A} is a subrepresentation under the quantum double. 
We then restrict the allowed (x,} to u E ker t c A. It is easy to check that this still defines a 
quantum double subrepresentation. which is the one stated. It can sometimes coincide with 
I$. 

The calculation of air, and 9-l from Proposition 2.3 is trivial. For the quantum Lie 
bracket in Proposition 2.4, we note first the Ad-invariance identity 

(‘(l,@h(l,c(z)Sh(2) = (Sh(l,)c(l)h(2)~C(2) Vh E H. (13) 

which holds for any central element C. Then 

Ad/,(x,,) = (a. c(l))A&(ccz)) - t(h)(a. c) 

= (a, (Sh(l))c(l)h(2))c.(z) - c(h)@. c) 

=~,,,~,(h. (Sa(l)&)) + (u. (.Sh(l)kh(z)) -f(h)@. c) 

=.+)(h. (Sa(l))a(3)), 

where the last two terms cancel because L’ is central. In other words, the map A - H 
sending LC H (a@id)Ac intertwines the quantum adjoint action and the quantum coadjoint 
action; likewise for its projection to ker E. which is the map a ++ x,,. Using this observation. 
we have the quantum Lie bracket 

Ix,.xb] =x+,(x<,. (S(l))&)) = +,(u, (,(I,)((.(?,, (%I))&)) - -y/,(u. (,J 

giving the result as stated. Likewise, the braiding in Proposition 2.4 comes out as 
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again using the intertwining property for the map u H x,. 0 

The centrally generated calculi are dual in a certain sense to inner type-1 calculi. Thus, the 
quantum tangent space for the inner calculus in Proposition 2.5 can be viewed as the kernel 
under differentiation for a suitable (right-handed) calculus on H, taken along the direction 
of a! - .~(a). By contrast, the quantum tangent space for a centrally generated calculus can 
be viewed as the projection to ker E c H of the image of c under differentiation along all 
possible a E kern c A, for a suitable (left-handed) calculus on H. Also, for factorisable 
quantum groups (see the next section) there is a correspondence between central elements 
and elements invariant under a right handed AdR coaction, via the quantum Killing form, 
see [4]. So centrally generated calculi and (a right-handed version of) inner calculi are in 
correspondence in this case, although quite different in character. 

A centrally generated calculus typically has many quotients, i.e. its quantum tangent 
space L, itself has further subrepresentations. 

Proposition 2.7. L, in Proposition 2.6 has a subrepresentution LM~,‘. = span(x, 1~1 E I&} 
for any right Ad-invariant right ideal MR C ker E C A. Hence every non-trivial central 
element c defines a ‘mirror’ operation from the mod&i space of bicovariunt calculi to itseJf 
sending a culcuLus dejined via MR according to a (right-handed version of) (2) to the 
culculus with quantum tangent space LM~,(. C L,.. 

Pro05 Note first of all that the axioms of a bicovariant calculus are left-right symmetric. 
The construction r = V@3A in (2) works just as well in a right-handed form r = A@V 
were V = kerE/MR and MR is a right ideal stable under Adn(u) = u(2)@(Sa(l))u(3). 
On the other hand, when acting on a central element, the relations of the quantum dou- 
ble reduce to ha = (h. (SU(~))U(~))U~~). Hence ht>(mr>(c - E(C))) = hmD(c - e(c)) = 

(h, (Sm(l))m(x))m(z)D(c - e(c)) E LM~,~ for all m E MR and h E H, by AdR-invariance 
of MR. Also ur>(mr>(c - e(c))) = muD(c - e(c)) E ~~~~~ for all m E MR and a E A, as 
MR is a right ideal. The quantum double action D is from Lemma 2.1, and x,, = UD(C - t(c)) 

as in Proposition 2.6. 0 

The ‘mirror’ calculus is the quotient of the universal calculus as in (2) by the (left) ideal 

MR = (a E kere) (mu, c) = 0 Vm E MR], (14) 

which is the ‘mirror’ operation at the level of quotienting ideals. Moreover, the similar 
‘mirror’ operation with left-right interchanged takes us from left ideals to right ideals, 

and there is a canonical inclusion MR C MR. The calculus with quantum tangent space 
LC in Proposition 2.6 is the mirror image of the zero differential calculus, and vice versa. 



S. Mujid/Journul of Geometry und Physics 25 ( IYW) 119-140 129 

In addition, the zero differential calculus is the mirror image of the universal differential 
calculus. 

Also clear from this point of view, if L 1, L2 are subrepresentations of the quantum double 
then L I n L2 is also. We denote its calculus by ft r2; it is a quotient of both ft , fz. L 1 + LZ 
is also a subrepresentation and we denote its calculus ft * l-1; it has ft , l-1 as quotients. 
If LI n L? = (0) then the resulting calculus is the obvious direct product calculus. We 
say that a differential calculus is coirreducible if its corresponding quantum tangent space 
L is irreducible as a quantum double representation. This implies that the calculus has no 
proper quotient calculus. Note that this should not be confused with irreducibility for the 
calculus (no proper subcalculus) which is automatically true for all calculi in the paper as a 
consequence of axiom (5) in the definition of a bicovariant calculus. Moreover, in nice cases 
(where the quantum double is ‘semisimple’ in a suitable sense) one has only to decompose 

kern = LI @ Lz @... (15) 

into irreducibles in order to classify coirreducible calculi; each distinct irreducible in the 
decomposition corresponds to an isolated coirreducible calculus and each irreducible with 
multiplicity typically corresponds to a continuous family of calculi given by a parameter 
describing the embeddings of the irreducible into its multiple copies in ker t. Moreover. we 
see in this situation that the universal differential calculus, which corresponds to L = ker t. 
can be built up as a direct product of coirreducible calculi. 

3. Calculi on finite groups and enveloping algebras 

In this section we apply the formulation of the classification problem in the preceding 
section to the elementary cases of finite groups and enveloping algebras. The result in the 
case A = C(G) (the algebra of functions on a finite group) is more or less known by other 
means, but recovered now from Proposition 2.2 and with proper attention to irreducibility. 
We also give the more novel dual case A = @G (the group algebra). It turns out to be more 
similar to the quantum group case in Section 4. The classification for classical Lie groups 
and enveloping algebras remains open, but we make some remarks. 

Proposition 3.1. Let A = @(G) where G is a jinite group, elf: [ 151. The coirreducible 
bicovarimnt d@erential calculi are in l-l correspondence with the non-trivial conjugcuy 
c1n.sse.s C c G. We recover this result from the above upproach as corresponding to 

where e is the group identity element. 
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Proof Here H = @G and we classify all irreducible subspaces L C ker E c CG which 
are stable under the adjoint action and the action of C(G) in Lemma 2.1. The algebra 
A = C(G) is commutative and elements of the form xK = g - e are a basis of simultaneous 
eigenfunctions for its action on ker E, since UDX K = a(g)g--a(e)e--u(g)e+u(e)e = u(g)xg 

for any g E G. By choosing a a Kronecker delta function we see that if L contains a linear 
combination involving xg then it contains xg itself. Hence L = span(x,]g E C} for some 
subset C c G not containing e. This is the content of stability under the A part of the quantum 
double action. The content of stability under the H part of the quantum double action (the 
adjoint action of G extended linearly) is therefore that C should be a union of non-trivial 
conjugacy classes. If L is irreducible as a quantum double module then for any nRO E L, 
L = D(H)D.x~, = span(hSgr>xRol h, g E G] = span(xhfi,h-l (h E G), i.e. C is exactly one 
conjugacy class. Conversely, if C is a non-trivial conjugacy class andx = C, cRxg E L then 
D(H)Dx = span(c,xh,h- I I h, g E G} = L as at least one coefficient cR must be non-zero. 
The corresponding braided derivations are &?a = (xg, u(t))u(2) = a@( )) - a(e( )) and 
the ‘quantum Lie bracket’ is [x,, xh] = Ad,&) - xh = ~~~~-1 - Xh as stated. Likewise, 
we compute @ from (6) and (8) in the form stated. One also has kere = @c#(~)Lc, 
corresponding to the decomposition of G - (e) into non-trivial conjugacy classes, i.e. the 
universal calculus as a direct product of the coirreducibles. ??

These calculi are all ‘non-classical’ in the sense that the braiding needed for the derivation 
property is non-trivial (when G is non-Abelian). They are in fact a variant of the familiar 
q-derivative, with q being replaced by a group element taken from the conjugacy class. 
The non-classical nature also appears as non-commutativity of the calculus in the sense 
udb # (db)u for some u, b. The calculus is inner type-1 with a! the characteristic function 
of C U (e}, and inner type-II with cr the characteristic function of C. We can also apply 
our formalism to A = CG. If G is Abelian, we have CG = C(G) and return to the 
preceding example applied to the dual group. But when G is non-Abelian, the algebra A is 
non-commutative and we are really doing ‘non-commutative geometry’. 

Proposition 3.2. Let A = @G where G is a finite group. The coirreducible bicovuriant 
differential calculi are in l-l correspondence with pairs V, h, where V is a non-trivial 
irreducible (right) representation of G and h E P(V*). The corresponding calculus has 
dimension dim V and 

L = span{x, = (ua( ), A) - (II, h) I ( u E V), 

a,,,(g) = ((uag, h) - (u, 4)g, @(gC%J = x,,,@g 

and trivial ‘quantum Lie bracket’. 

Proof Here H = C(G) is commutative. Hence the adjoint action in Lemma 2.1 is trivial 
(as is the bracket [ , ] and its associated braiding). We therefore need only to classify 
irreducible subspaces L C ker E c C(G) under the action of @GOP. This action is hDx = 
x(h( )) - x(h) 1 for all x E ker t, which is the standard projection 17 to ker E of the right 
regular representation of G on C(G) by multiplication from the left in the group. The 
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Peter-Weyl decomposition @(G)XC $v#@ V@V* projected via the projection i7 is an 
isomorphism $v#@V@V*Z ker E, giving the decomposition of this into irreducibles. In 
the Peter-Weyl decomposition, the element v@k maps to the function (ua( ), h) E C(G). 
giving the form of Z. shown. We need J, # 0 and we identify all h which are related 
by a phase since these give the same L, i.e. the continuous parameter is k E P(V*) = 
@PdimVp’. The braided-derivation is a,,,g = (xc,, g)g on group-like elements of CG. 
which gives the form shown. The group-like elements are simultaneous eigenfunctions for 
all the braided-derivations. The braiding is easily computed as 9-l @8x,,) = g~_r,~@g = 

(uag( ), h)@g - (uag, h)@g = .~,,~~@g. 0 

Note that a basis of V* specifies dim V isomorphic copies of V in the Peter-Weyl de- 
composition. However, we need here not only the multiplicities but the actual irreducible 
subspaces L c ker E. We obtain a subspace isomorphic to V for every non-trivial linear 
combination (modulo an overall scale) of the basis elements. i.e. a continuous family of 
calculi parametrised by the projective space P( V*) for each irreducible representation V. 
Also, since irreducible representations of G correspond to characters, one can recast this 
result in terms of these. For a given character x we identify Vi as the quotient of @G where 
[h] = [h’] if x (gh) = x (gh’) for all R. Then coirreducible calculi are in l-l correspondence 
with pairs x. [h] according to 

L = spanIx, = x(x( )k;) - x (oh) 1 Ig E G] 

&$ = (X(Rhk) - x(gh))h. P4h@x,) = x,y/,@S. 

where 8, h E G. Here V, is the vector space spanned by x (( )K) as g runs over G and 
is an irreducible (right) representation of G acting by left multiplication in the argument 
of x. From this, it is clear that these calculi on CG are all centrally generated as L, by 

(’ = x(( )A). 
Finally. we consider the differential calculi on a classical Lie group coordinate ring 

A = C(G). Here C(G) denotes an algebraic model of the functions on G constructed as 
a Hopf algebra non-degenerately paired to the enveloping algebra U(g), see [7]. Quantum 
tangent spaces L c U(g) themselves can viewed as crossed U(g)-modules independently 
of C(G). 

Proposition 3.3. Let g be a Lie algebra. For each natural number n there is LI bicovariant 
quantum tangent space L = g + gg + . . . + g”, the subspace of U(g) of degree ( n und 
> 1. For example, ,for n = 2: 

L = wnE. rlCl C9 B, t E gl. a, = -$. a,,< = t17, 

W-‘(aCG) = tC3a, S-‘(a@w{) = rlt@a - t@ri(u) - @3i(a). 

[C. xl = tx - x6, [q5‘. xl = 7g-.r - qx{ - t.uq + .rTr/, 
9(~@x) = xc@, Iy(~r@x) = Lt. xlc?q + [17. xlc?J~ + x@<rl 

,fiw all x E L. Here g is the right-invariant vector-jield ussnciated to c E g. 
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Proo_f: Note that the degree of a given element in U(g) is not well-defined but the subspace 
spanned by products of up ton elements is. We show only that such a subspace L(n) forms a 
quantum double subrepresentation. To see that it is closed under the adjoint action of U(g) 
it suffices to see that it is closed under the action of each 6 E g. This action is by commutator 
in U(g). Hence assuming the result for L(“-‘) and the Leibniz rule for commutators, we 
obtain the result for L(“) by induction. The other part of the quantum double action (that of 
A = Q=(G)) is given by evaluation against the left coaction /I = A - id@l. Then #J(<x) = 

A(cx) - 6x81 = (c@l)Ax + (l@)Ax - 4x631 = (<@1)/3(x) + (1@4)B(.~) +x@ E 
U(g)@L(“) as /3(x) E U(g)@L(“-‘) and y1 > I. Here x E L(“-‘) and we proceed by 
induction. The explicit computations for L(‘) are immediate from the form of the coproduct 
on n[ in the formulae above. Here, a,(a) = (e, u(l))a(2) = (d/dr))ucl(e’t( )) = -c(u) for 
u E C(G). In the matrix Lie algebra case, this is given by the fundamental representation 
used in defining the pairing between U(g) and C(G), i.e. it is actually algebraic. 0 

We see that it is possible to view higher order differential operators as if they are 
‘first-order vector fields’ - but braided. A second-order operator, for example, is clearly 
not a derivation in the usual sense but it is a braided-derivation for suitable 9. For example, 
one could compute its ‘flow’ as a corresponding braided-exponential. This opens up the 
possibility of a ‘geometrical’ picture for the evolution of quantum systems generated by 
second- or higher-order Hamiltonians, to be given in detail elsewhere. 

On the other hand, we do not attempt to classify all bicovariant calculi here. This would 
appear to be an interesting problem in the classical theory of enveloping algebras: find all 
subspaces L which are stable under the adjoint action and under the left coaction /I = 
A - id@ 1. Moreover, the L(“) are of course not coirreducible. Instead, we have a filtration 

g = L(l) c L(2) c L’3’ . . . c L(“) = kerc, (16) 

where g = L(l) corresponds to the classical differential calculus on C(G). At the level 
of bicovariant calculi we have a sequence of quotients of the universal one (of all finite 
degree invariant differential operators) eventually quotienting down to the standard one. 
The Casimir construction provides further bicovariant calculi falling in between these L(n). 

Proposition 3.4. Let g be a Lie algebra and c = K (I) K (2) the quadratic Cusimirussociuted 
to symmetric ad-invariant K = K(‘)@K(2) E g@g (summation understood ). The extension 
g @ C by c is a quantum tangent space. g acts by right-invariant vectorhelds and c acts us a 

second-order operator viewed us a braided-vectorjeld. The quantum Lie bracket restricted 
to g is its usual Lie bracket. The other cases and the braiding are 

L,$, cl = 0, [c, cl = 0, [c, tl = [K(l), [Kc2’, <II, P(cf?@q) = r/c% 
S(~@c) = c@~, ‘P(cC3$) = CC% + 2[K(‘), ~]@IK’~‘, 

P(c@c) = c@c 

for all < E g. In the matrix Lie algebra case, if K is non-degenerate then g = L, and 
g @ @ = &. are centrally generated via Proposition 2.6. 
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Proof The first part is the restriction of g + g* in Proposition 3.3 to g @ @. In particular, 
(I/(c@) = [K(l), C;]@K(‘)+[K(2), t]@K(‘)+t@cisasstatedbysymmetryof K. Forthe 
second part we assume (for simplicity) that p : g g MN (the N x N matrices) is an inclusion 
of the Lie algebra and take A = C(G) generated by corresponding matrix elements ti with 

pairing (fii. e) = p(<)‘j. For L”,. in Proposition 2.6, we have x,, = (a, c(t))c~) - (u. (~) I = 
E(LI)C + 2(a, K(‘))K(2). Hence, in particular, xt, = 6’jC* + 2fl(K”‘)‘jK’*‘. Since p is 
faithful. its dual M$ -+ g* is surjective. If we assume further that K is non-degenerate 
when viewed as a map K : g* + g then we see that span(x,,,} = g @ C. Moreover. 

%I,” = UDX,, = 6’jXo + E(a)2p(K”‘)‘jK’” = S’j(.r,, - ~(u)c) + E(u)x,/ , using the 
actions fromLemma2.1. Hereu~t = (u. c(t))<(z) - (u, 01 = c(u)< forall < ; g. Hence. 
by induction. all x,, E s @ @ as required. For L, we exclude the diagonals i = j so that 
the span is R alone. Note that when g is simple we have a unique K and a unique quadratic 
Casimir c. 0 

Equivalently, the mirror operation in Proposition 2.7 in this case turns the zero differential 
calculus into the classical one, and vice versa. Also, if g under the adjoint action is isotypical 
(as for .FI?) then the quantum Lie bracket [c, t] here is fixed multiple of 6. The simplest 
case L = s/z @ C corresponds to the non-standard four-dimensional differential calculus 
on SU (2) which has been studied in [ 151 as the q + 1 limit of the known four-dimensional 
calculus on the quantum group SU,(2) in [2]. Similarly, L(“-‘) @ C corresponds to a 
natural calculus in between the calculi corresponding to L(“-‘I and L(“), whenever we 
have a degree n central element. Intermediate calculi are generally what arise when we take 
the limit of quantum group differential calculi (these will be classified in Section 4). i.e. 
this is a general feature. Put another way, we will see from the classification in the next 
section that the standard dim g-dimensional calculus on a simple Lie group G violates the 
‘principle of q-deformisability’; only certain extensions of ordinary vector fields on a Lie 
group by higher order vector fields can deform to calculi on G,. 

4. Calculi on factorisable quantum groups 

In this section we present our main result, which is a classification of the bicovariant 
calculi for a certain natural class of quantum groups. We then discuss the application of the 
result to the standard quantum groups G,. 

We recall that a ‘strict quantum group’ or quasitriangular Hopf algebra is factorisable 
[16] if R2t’R viewed as a map Q : A + H by Q(u) = (a@id)(R2iR) is an isomorphism. 
This is the strongest form; one may also demand separately that the map is injective or 
surjective. We also require a kind of ‘semisimplicity’ condition in the sense that there is a 
Peter-Weyl decomposition 

@VV*@VSA (17) 

provided by the matrix elements of the inequivalent finite-dimensional irreducible repre- 
sentations V of H. If V is such a representation, with basis {r;) and dual basis (,f’). we 
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define the matrix elements p’j E A by hrzei = ej ,oji (h) and the above map by ,f’@ej H 
P"j. 

Lemma 4.1. Let H be a factorisable quantum group with dual A. The map Q identi$es 
ker c c A and ker E c H. Under this identi&ation, the action of the quantum double in 
Lemma 2.1 becomes the action on ker t c A given by 

ha = qz)(k (%)b(3)) 
br>a = (b, KY’(1’R(2))(a(l), R”2’)(a(g), R(‘))a(z) - (b, Q(a)) 1 

forallhEHandbEA.Here,R’-R ‘(‘)@17?(~) is a second copy ofR. 

Proo$ It is immediate from the counity property of the quasitriangular structure R that 
Q( 1) = 1. Hence &(ker E) = ker E c H. Moreover, we know from Ad-invariance of the 
quantum Killing form that Adh o Q(a) = Q(Adia) where Adz is the left quantum coadjoint 
action as stated for hDa in the lemma, and Ad is the quantum adjoint action used for x in 
Lemma 2.1. For a proof see [9] or the text [7]. The new part concerns the other action: 

bdi?(a) = (b, Q(a)(r))&(a)(z) - (b, &(a)) 1 

(1) 
= (a, R~2’R~‘)) (b, R, (,)X2 (2) )Ri1’i2,Rf),2, - (b, &(a))Q(l) (1) 

= (a, R~)Rf)R~)‘R~‘)) (b, R~‘)Rf))R:‘)Rf’ - (b, Q(a)) Q( 1) 

= b(l), R~‘)(q,), R:‘))(b, Rl”af’)Q(a(2)) - (b, Q(a))Q(l) = &(bDa) 

for all a E kerr c A and b E A, where R(,‘) 8 RI’), . . . , R~‘@Rf’ are four copies of 
R. The first equality is the action of A in Lemma 2.1. The second puts in the formula for 
Q. The third is the coproduct property of R and finally we recognise the required result 
in terms of the action bDa stated. Hence Q intertwines the stated action of the quantum 
double with the action in Lemma 2.1. Note that this computation also works at the level 
of a coaction of H rather than an action by b E A (i.e. the action of the quantum double 
remains A-regular). 0 

So the possible quantum tangent spaces L are in 1-l correspondence with subrepre- 
sentations of ker E c A under this action of the quantum double. This action looks more 
complicated than before. However, there is a well-known isomorphism in the factorisable 
case of the quantum double with HMH. The latter is H @ H as an algebra and has a coalgebra 
which is a twisting of the tensor product one. The map 8 to HMH is [ 161 

O(h@a) = h(l)R ~(2)~h(2)R(1)(R-(‘)R(2’, a). (18) 

The full details of the isomorphism and an explicit formula for 8-l are in the author’s 
text [7]. 
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Proposition 4.2. The action in Lemma 4.1 qf the quantum double. in theform HHH acting 
on ker E c A, takes the,form 

(h@l)Da = (Sh, a(l))a(2) - 1 (Sl?. a). (163gM = a(l)(g, a(2)) - 1 k. u) 

fi)rallh,g E H anda E kern c A. 

Proof To find the action of HMH we need the explicit inversion formula for H in 171. Then 
(h@l)Da = H-‘(h@l) Da, etc., can be computed, and one obtains the result stated in the 
proposition. Once these actions have been obtained, however, it is enough (and rather easy) 
to verify that pull back along 0 indeed recovers the action of HwA”P in Lemma 4.1. Thus. 

H(h~l)DN=(h(l)~h(2))Da = (h(l,~l)rzacl)(h(2).u(?)) - (h(t,@l)Dl(h(~).u) 

= (Sh(t), ~(1))~(2)(ht2), a(3)) - (Sh()). a(t)) 1 (h(z). a(z)) 

= (h. (Sa(l))a(j))a(a, 

H(l@b)r>u = (R~“‘~R”‘)t>a(R-“‘R”‘, b) 

= (R-‘%l)Da(,,(R “I. a(?))(72 -“‘R”‘. b) 

- (‘h!-‘2’@l)~l (72”‘. a)(R-“‘R’“, b) 

= (g@‘. u(,))a(z)(R”‘. a(3,)(‘7-“‘R”‘. b) 

- (SRpC2’. acl,)l (R”‘. a(2))(R-(“RC2), b) 

= a(2j(R’(2’, a(I))(R.“‘. a(j,)(R’(“R’“). b) - (Q(a). 6) 1 

as required. We used the form of 0, the actions as stated in the proposition and, in the last 
line, the antipode property id@SRP’ = R of a quasitriangular structure. Our notation is 
7q-‘2’@-‘” = R-l, ??

So, quantum tangent spaces L are in correspondence with subrepresentations of kert 
under this action of H@H. We can now obtain our main result. 

Theorem 4.3. Let H be a,factorisable quantum group with dual A, and suppose that the 
Peter-We?1 decomposition (17) holds. Then thejnite dimensional bicovariant coirreducible 
calculi on A are in l-1 correspondence with the non-trivialjinite-dimensional irredicihle 
representations V of H. The corresponding calculus has dimension (dim V)’ and 

L = span(x’j c &(p’j - lS’j)l i. j = I.. . . , dim V). 

ij,,,(N) = Q(Pij@U(l))U(2) - 8’jLl. 

*/-‘(a@x’j) = XNb~U(3,R(U(l,~p’.)R(phj~U~2)). 

Ix’ ,I* .Kk[] = .X”~Q(/3ij@(Spko)ph/) - Xx,S’j. 

*((x’j@‘Xk/) = xm,~X”hR((Sp”,)p”d~pi,)R(phj~(Sp”~)pdl). 

where we also regard the quantum Killing,form and quasitriangular structure as,functionals 
Q.R:A@A+C 
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Proof We first separate off the trivial representation in (17), so AX 61 (@v#cV*@V) 
where the sum is over non-trivial V. The projection n(a) = a - 1 E (a) from A -+ ker t 
establishes an isomorphism 

ker tY @V+C V*@V. (19) 

This is because I7 and the projection to @IV+@ V*@V have the same kernel, namely the span 
of the identity element in A. By Proposition 4.2, we therefore have an isomorphism of H @ H 
modules, where the second H acts on V as in the Peter-Weyl decomposition (the given 
irreducible representation V) and the first copy of H acts on V* by the conjugate represen- 
tation hr>f = f(Shr>( )) for f E V*. Next, as H@H modules, these V*@V are distinct 
and irreducible. Hence they are precisely the choices for irreducible subrepresentations of 
kern c A. 

The explicit formula for the braided-derivations and their requisite braiding are easily 
computed from the formulae in Proposition 2.3. From the proof of Lemma 4.1 we have 

(A _ id@l)xij = R(‘)R’(*) ((P'j - 6’j)(l)3 R'*')((Pij - 6'j)(3)3 72’“‘) 
@Q((P'j - S'j)(*)) - &(P'j - S'j)@l 

= R(‘)%?,‘(*)@(p’a, R'*')(Pbj, R”“)e(p”b) - e(/l'j)@l 

zz R(‘)R’(*)@(p’,, R’2’)(pb;, R’(‘)),&. 

Evaluation against this is the action of A in Lemma 4.1, which is the action needed to com- 
pute the braiding. Thus, Y-‘(U&j) = u(~)@(u(‘), R(“R’(*‘)(p’,, R(*‘)(pbj, R’(‘))X”b, 
which can be written in the form shown where R is regarded as a functional on A@A. The 
quantum Lie bracket and its braiding from Proposition 2.4 are also easily computed and 
follow the same lines as in [9,17], except that we are not tied to any particular representa- 
tion V or any fixed R-matrix; we include the proofs only for completeness in our present 
conventions. Thus, by Ad-invariance of Q we have 

[xj, XI”] = &2&?<p; - Sj)D(P”r - Jk,)) 
= &(P"b)(&(P'j)t (Spka)pbl) - sijQ(pkl> 
=Xab(G!(Pij)9 (SPka)Pbl) - SijXk13 

which we write in the form stated where & = R2’R is regarded as a functional on ABA. 
Here D is the quantum coadjoint action of H in Lemma 4.1. Finally, using the above result 
for Ax’j and Ad-invariance of Q, we have 

P(X’j@Xkl) = [X’j(,), Xkl]@Xij(*) - [Xii, Xk{]@l 

= Q(R(‘)R’(*)D(pk, - sk,))@(pi,, R(*)) (p’j, %!,‘(‘))Xab 

= &(~c~)~~ab(~‘1’~“2’, (L$~,),#[) (pi (1 * R’*‘) (pb. R”“) J’ 

- Gk/@Xij 

= XC&,Xab(@‘)R’(*) (Spk )&)(,+ @*‘)(pb. @‘)). 3 c u 7 J’ 
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which we write in the form stated. Note that both the expressions Q(~‘i@(Sp’,,)p~,) 
and R((sp”,)p”d~~‘,)R(pbj~(Spkc)pd,) can be expanded as four-fold products of the 
matrices R = (p@p)R, its inverse and f? = (p@p o S)R. This step and the resulting 
R-matrix formulae are identical in form to the computation of the quantum Lie algebra 
‘structure constants’ in [9] and the quadratic relations of the braided matrices in [ 171 (the 
matrix denoted @I’ there), respectively. Hence we omit the proofs and note only that, after 
rearranging the R-matrices, one has the same form as for a quantum or braided-Lie algebra 
of matrix type, namely 

R~I[xI, Rx11 = xzQ - Qxz, RzlS(x~@Rx?) = .u?Rzl@xl R. (20) 

where the numerical suffices denote positions in a matrix tensor product and Q = R?I R. 
The relation between (20), braided matrices u = x +id and the quantum double is explained 
further in [8] (where the quantum double braiding @ is denoted fi). On the other hand. now 
(20) applies to any irreducible representation V of H and not some fundamental basic 
representation. which need not exist. 0 

Let us note that if R is a quasitriangular structure in a quantum group then so is R,I’ 
Thus all results involving a quasitriangular Hopf algebra have a ‘conjugate’ one in which 
this conjugate R,, -’ is used instead of R. This conjugation is also intimately tied to the 
*-operation or complex conjugation in many systems [IS]. In the above theorem, we see 
that for every V we have equally well the conjugate 

i = span[x’j E &(p’j - 16’j)l i. j = 1. . . dim V). (21) 

where &(a) = (a@id)(R-‘R~l’). Here t is isomorphic to L but the isomorphism (which 
is 0 o Q-i restricted to L) is non-trivial. This fits also with the general point of view of 
quasi-* structures on inhomogeneous quantum groups [ 181 where the tensor product of 
unitaries is unitary only up to a non-trivial isomorphism. 

These results can be applied formally to the standard quantum groups H = U,(g) with 
dual A = G, associated to complex semisimple Lie algebras, provided we work over formal 
power-series C[ [A]] and introduce suitable logarithms for some of the G, generators, etc. Or, 
if we want to work algebraically over C (with generic q), we need to localise and introduce 
roots of some of the generators of G, and use the algebraic form of U,(R) where q H/2. 
etc.. is regarded as a single generator. This is clear from the standard cases such SU,, (2): In 
standard notations the value of & on the generators is 

e (; I;> = (q qH 
-‘+q - q-l)X+q 

H/2 ‘i-lyl$&?;:x-). 

where C = qH-’ + qeHf’ + (q - q-‘)*X+X_ is the q-quadratic Casimir. 

(22) 

According 
to [ 161, the standard quantum groups are all factorisable modulo such formal extensions. 
Likewise, the Peter-Weyl decomposition (17) holds formally for the standard semisimple 
g. This is because the category of finite-dimensional representations in the classical and 
quantum cases are generically equivalent, and the assumption holds in some form for the 
classical case. Note also that the entries in (22) projected to ker 6 span a four-dimensional L 
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associated to the spin l/2 representation, and has the structure in Theorem 4.3 without any 
power-series. Indeed, the quantum double of U, (~~12) is known to be a q-deformation of the 
Lorentz group and hence the lowest possible generic representation is the four-dimensional 
one on q-Minkowski space. In this simplest case, L is the same subspace L. The latter also 
coincides with LC from Proposition 2.6 with C the q-quadratic Casimir above, and is a 
subspace of L,.t from Proposition 2.5 with o = (qu + qe1d)/qe2(q” - l)(q - 1) the 
normalised q-trace. 

Therefore. we should understand Theorem 4.3 not as a complete algebraic classification 
for a given version of each given G, (this is a much harder problem and has been addressed 
so far [3] only for variants of the standard calculi of low dimension), but as a classification 
of those calculi which are ‘generic’ in the sense that they extend to the various localisations 
and square roots of the generators, etc. needed for exact factorisability. In other words, 
there are natural calculi, corresponding to L (or L) for each finite-dimensional irreducible 
representation V, and these are all modulo ‘pathological’ possibilities for particular q for 
particular versions of particular G,. 

For the A, B, C, D series we have a natural ‘fundamental representation’ V and in this 
case it should be clear that the calculus corresponding to L is the one found by Jurco [ 131 by 
other means. Here p = t, the generator of G,, and xij = (/+Sl-)‘j - a’, in Theorem 4.3. 
This calculus is also of the form L,. for the central element c = Tr,l+SI-, where Tr, is the 
general q-trace. Indeed, A(l+S1-)‘j = l”,SI-hj~(lfSI-)“b, from which it is immediate 
that x’~,, = ti,jpc and hence x,,,(, = UDXr, I in Proposition 2.6 are linear combinations of 

x’j for all u E G,. Irreducibility then implies that the calculi coincide. We therefore have 
new constructions for these standard calculi and the result that their generalisation to other 
irreducible representations exhausts all the generic first-order bicovariant differential calculi 
on the standard semisimple quantisations. 

5. Concluding remarks 

We conclude with some remarks about further work. First, from the first order ‘ 1 -forms’ 
one may naturally construct a whole exterior algebra [2], forming a super-Hopf algebra 
[ 191. But other constructions of the exterior algebra may also be possible and should be 
classified. 

Second, the results in Section 2 have an analogue for braided groups. These are needed 
to include q-deformations ‘wi and [wi.‘, etc., with their additive (braided) coproduct. The 
classification of differential calculi on such objects would therefore seem to be the starting 
point for some form of q-geometry based on R”. Our result in this direction is that generically 
there is only one coirreducible braided-bicovariant differential calculus on R:,3 (say), and 
it is infinite-dimensional. Its braided tangent space L consists (in a suitable completion) of 
a q-deformation of the space of solutions of the massless Klein-Gordon equation projected 
to the functions vanishing at the origin. Briefly, the sketch is as follows. Let B be a braided 
group in a braided category generated by ‘background quantum group’ H as its category of 
modules. We define a braided-bicovariant calculus r in the obvious way and proceed in a 
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similar manner to Section 2. The role of the quantum double is now played by the ‘double- 
bosonisation’ B*>a HKB quantum group [20]. This acts on ker c c B and the possible 
braided tangent spaces C are in l-l correspondence with subrepresentations of ker t. When 
B = R:‘3 it is known from [2l] that the double-bosonisation is the q-conformal group and 
the action on B is a q-deformation of its action on [w”. Classically, this representation has 
one irreducible subrepresentation, the space of solutions of the massless Klein-Gordon 
equation. Further details will presented elsewhere (221. 

Braided bicovariant calculi on the braided groups obtained by transmutation of quantum 
groups should also be looked at; being braided-commutative [23], they may have more 
natural exterior algebras. This would be analogous to the situation in Section 2, where 
we recalled that the braided version of the ‘quantum Lie bracket’ is better behaved for 
constructing some kind of enveloping algebra. This remains a direction for further work. 
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